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undecane, a Dacus oleae olive fly pheromone

Junliang Hao and Craig J. Forsyth*

Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA

Received 11 October 2001; accepted 16 October 2001

Abstract—Application of a novel double intramolecular hetero-Michael addition (DIHMA) strategy to spiroketal synthesis was
illustrated by a concise synthesis of (±)-(4S*,6S*)-4-hydroxy-1,7-dioxaspiro[5.5]undecane, a Dacus oleae olive fly pheromone.
© 2001 Elsevier Science Ltd. All rights reserved.

Spiroketals are significant subunits present in many
natural products with biological importance, and syn-
thesis of this type of functionality typically involves
dehydrative ketalization.1 Recently, we have developed
a novel double intramolecular hetero-Michael addition
(DIHMA) strategy toward the construction of the 2,9-
dioxabicyclo[3.3.1]nonane system within the complex
architecture of azaspiracid natural products.2 This
approach delivered the intricate bicycloketal FG rings
of azaspiracid in an efficient and expedient fashion.
Although the double intermolecular hetero-Michael
addition has been sporadically employed in synthetic
organic chemistry,3 the potential of the hetero bis-con-
jugate addition, especially the intramolecular version,
to assemble complex molecular frameworks has yet to
be fully explored.

It was reasoned that the DIHMA strategy would be
applicable to spiroketal synthesis (Scheme 1). Com-
pared to the typical dehydrative ketalizations, the pro-
posed synthesis of spiroketals via DIHMA has
potential advantages, such as (1) the liberation of diols
from their masked forms may be integrated into the
bis-conjugate addition step by judicious choice of the
protecting groups and deprotection conditions; and (2)
the residual carbonyl functionality on the spiroketal
rings would serve as a versatile synthetic handle for
further manipulations. We report here the realization of
the non-dehydrative DIHMA process in the synthesis

of a spiroketal substructure, as demonstrated by a short
total synthesis of (±)-(4S*,6S*)-4-hydroxy-1,7-dioxas-
piro[5.5]undecane (5),4 a pheromone from the rectal
glands of the female olive fly (Dacus oleae, a major pest
in the Mediterranean basin).5

Treatment of 5-hexyn-1-ol TBS ether (1a) with n-BuLi
(Scheme 2), followed by addition of aldehyde 2 pro-
vided a propargylic alcohol (3a), which was oxidized to
produce ynone 3 in good overall yield. Under the
typical acidic conditions for the DIHMA process devel-
oped previously,2a cleavage of the silyl ethers was
effected with CSA in MeOH and subsequent solvent
exchange from MeOH to benzene promoted the bis-
conjugate addition. Following the literature precedent,6

ketone 4a was reduced with NaBH4, and acid-catalyzed

Scheme 1. Bicycloketal versus spiroketal synthesis via
DIHMA.* Corresponding author. E-mail: forsyth@chem.umn.edu
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Scheme 2. Synthesis of 4-hydroxy-1,7-dioxaspiro[5.5]undecane.

isomerization provided (±)-(4S*,6S*)-4-hydroxy-1,7-
dioxaspiro[5.5]undecane (5).7 Using the same reaction
sequence, 1,6-dioxaspiro[4,5]decan-9-one (4b)6,8 could
be prepared in comparable yields.

In summary, the total synthesis of (±)-(4S*,6S*)-4-
hydroxy-1,7-dioxaspiro[5.5]undecane (5) has been com-
pleted in a convergent and concise manner that
illustrates the applicability of the type II DIHMA
process for accessing spiroketal motifs within natural
products frameworks.
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